Skip to content

CRISPR-mediated therapy of Dystrophic Epidermolysis bullosa (Wernig 1)

Project lead Dr Marius Wernig
Organisation Stanford University, Stanford, USA
Project budget USD 315,534.00
Start date / Duration 01. Feb 2016 / 36 months
Funder(s) / Co-Funder(s) DEBRA Austria, EB MSAP/EBEP Recommended
Research area Molecular therapy

Project details

Short lay summary

We aim to develop a pioneering technique capable of repairing pathogenic mutations in the genetic material of patients suffering from Dystrophic Epidermolysis Bullosa, a devastating and often lethal skin disease. We will employ a novel tool of molecular biology, called CRISPR, to introduce experimentally controlled and transient damage to the mutated DNA of patient cells. Subsequently, naturally occurring DNA repair mechanisms can be exploited to reverse the disease-causing mutation to a normal state. Via this approach, we will generate patient-derived stem cells with repaired and normal genes. Our collaborators, the Oro and Lane laboratories, will then employ these stem cells to regenerate the skin of patients with Dystrophic Epidermolysis Bullosa (note that the latter is not part of this project).

What did this project achieve?

We now report the development of a novel therapeutic approach that will provide definitive treatment. Our approach starts with obtaining diseased skin cells from patients via a punch biopsy, which is minimally invasive. We then culture these cells in the laboratory and repair the disease-causing mutation of the COL7A1 gene with a state-of-the-art technology called CRISPR. Furthermore, while we repair the pathogenic mutation, we also convert these skin cells into induced pluripotent stem cells (iPSCs). The idea behind the latter is that, in contrast to skin cells, iPSCs can be grown in the laboratory indefinitely. Thus, we can grow a large amount of iPSCs in which the RDEB-causing mutation had been repaired. For the eventual therapeutic application, we will subsequently convert these repaired iPSCs back into skin cells that can be grafted onto the patient for definitive treatment. Once we have obtained correctly gene-edited iPSCs from a patient we can literally grow enough therapeutic skin grafts to cover the entire body! Since our approach started with the patients' own skin cells there will be virtually no immunological complication, allowing successful grafting.

Importantly, we have developed a very efficient way to generate these gene-edited iPSCs. Specifically, we can now combine CRISPR-mediated repair of the pathogenic mutation with reprogramming into iPSCs in 1 integrated step. This allows us to derive these repaired iPSCs from patient skin cells within less than 1 month, which is a most significant improvement over previous approaches that performed a repair of the pathogenic mutation separate from iPSC reprogramming. The main benefit of our accelerated protocol is that it shortens the time the cells are outside the patient’s body by numerous months. This is a tremendous improvement since we know that culturing cells outside the body for too long causes many mutations in the genome, which could have deleterious side effects like the development of cancers. Our approach is very robust as we have already generated 1-step gene repaired and reprogrammed iPSCs from numerous patients that carry different pathogenic mutations. In sum, this accelerated derivation of gene-repaired iPSCs in an unprecedentedly short time will make clinical translation feasible. We hope and expect to be able to bring this therapy, which will be a first-in-man CRISPR-mediated iPSC-based approach, to patients in the near future.


stem cells
Standford University
Back to main navigation